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Abstract

In this paper we develop a new analytical methodology for the evaluation of the outage
probability of cooperative decode-and-forward (DF) automatic-repeat-request (ARQ) relaying
under packet-rate fading (fast fading) channels, where the channels remain fixed within each
ARQ transmission round, but change independently from one round to another. In particular,
(i) we derive a closed-form asymptotically tight (as SNR → ∞) approximation of the outage
probability, (ii) we show that the diversity order of the DF cooperative ARQ relay scheme is
equal to 2L− 1, where L is the maximum number of ARQ retransmissions, and (iii) we develop
the optimum power allocation for the DF cooperative ARQ relay scheme. The closed-form ex-
pression clearly shows that the achieved diversity is partially due to the DF cooperative relaying
and partially due to the fast fading nature of the channels (temporal diversity). With respect
to power allocation, it turns out that the proposed optimum allocation scheme depends only on
the link quality of the channels related to the relay, and compared to the equal power allocation
scheme it leads to SNR performance gains of more than 1 dB. Numerical and simulation studies
illustrate the theoretical developments.

Keywords: Automatic-repeat-request (ARQ) protocol, cooperative decode-and-forward
(DF) relaying, outage probability, wireless networks.

1 Introduction

Conventional wireless networks involve point-to-point communication links and for that reason do

not guarantee reliable transmissions over severe fading channels. On the other hand, cooperative

wireless networks exhibit increased network reliability due to the fact that information can be

delivered with the cooperation of other users in networks [1]–[12]. In particular, in cooperative

systems each user utilizes other cooperative users to create a virtual antenna array and exploit

spatial diversity that minimizes the effects of fading and improves overall system performance.

Cooperative communications, also known as relay channels, was first introduced in [7] in which
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a three-way channel was analyzed based on the capacity region. In [8]–[10], relay channels have

been analyzed from an information-theoretic point of view. With respect to practical/realistic

cooperative communication protocols for wireless networks, past literature includes, but is not

limited to, the work in [1]–[6], [11, 12] and the references therein.

Automatic-repeat-request (ARQ) protocols for wireless communications have been studied ex-

tensively in the past and proved themselves as efficient control mechanisms for reliable data packet

transmissions at the data link layer [13]–[19]. The basic idea of ARQ protocols is that a receiver

requests retransmission when a packet is not correctly received. Recently, in an effort to increase

network reliability over poor quality channels, ARQ protocols were studied in the context of coop-

erative relay networks [20]–[22]. In particular, [20] was among the first such studies to present a

general framework of cooperative ARQ relay networks. It was shown that cooperative ARQ relay

networks have great advantages in terms of throughput, delay, and energy consumption compared

to conventional multihop ARQ networks in which point-to-point ARQ links are concatenated to

form network routes. In [21], information-theoretic analysis was developed and upper bounds for

the diversity order of a decode-and-forward (DF) cooperative ARQ relay scheme were character-

ized for both slow and fast fading channels as a means to study the diversity-multiplexing-delay

tradeoff. In [22], a closed-form expression of the outage probability of the DF cooperative ARQ

relay scheme was obtained for slow fading channels, but, unfortunately, the introduced approach

cannot be extended to fast fading channels.

Outage probability is, arguably, a fundamental performance metric for wireless ARQ relay

schemes and so is the diversity order. In this paper, we develop a new analytical methodology for

the treatment of DF cooperative ARQ relay networks in fast fading (packet-rate fading) channels,

which leads, for the first time, to a closed-form asymptotically tight (as SNR →∞) approximation

of the outage probability. The closed-form expression shows that the overall diversity order of

the DF cooperative ARQ relay scheme is equal to 2L − 1, where L is the maximum number of

ARQ retransmissions. The achieved diversity is partially due to the DF cooperative relaying and

partially due to the fast fading nature of the channels (temporal diversity due to retransmissions

over independent fading channels). We note that the diversity of the direct ARQ scheme (without

relaying) is only L and it is due to the fast fading nature of the channels. Based on the asymptot-

ically tight approximation of the outage probability, we are able to determine the optimum power
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that needs to be allocated at the source and at the relay of the DF cooperative ARQ relay scheme

for any given total transmission power budget. The optimum power allocation depends on the

variance values of the channels involved and the maximum number of retransmissions allowed by

the protocol. It turns out that the conventional equal-power allocation strategy is not optimum,

in general, and the optimum power allocation relies heavily on the link quality of the channels

related to the relay. Extensive numerical and simulation results included in this paper illustrate

and validate the theoretical developments.

The paper is organized as follows. In Section 2, we describe briefly the DF cooperative ARQ

relay scheme and the fast (packet-rate) fading channel model. In Section 3, we first develop two

useful lemmas which form the basis of our analytical approach. Then we derive our asymptotically

tight approximation of the outage probability of DF cooperative ARQ relay scheme. In this section,

we also include the outage probability expression of the direct ARQ transmission scheme for com-

parison purposes. In Section 4, we determine the optimum power allocation for the DF cooperative

ARQ relay scheme, and in Section 5 we present numerical and simulation studies. Finally, some

conclusions are drawn in Section 6.

2 System Model

We consider a cooperative ARQ relay scheme with one source, one relay and one destination as

illustrated in Fig. 1. The DF cooperative ARQ relay scheme works as follows. First, a data

packet of b bits is encoded into a sequence of length LT , where L is the maximum number of ARQ

retransmission rounds allowed in the protocol and T is the duration of a single ARQ retransmission.

Then, the sequence comprises L different blocks each of length T . In each ARQ retransmission

round a block of the message is sent, so the transmission rate is R = b/T . When the source transmits

a block of the message to the destination, it is also received by the relay. The destination indicates

success or failure of receiving the message by feeding back a single bit of acknowledgement (ACK)

or negtive-acknowledgement (NACK). The feedback is assumed to be detected reliably both by the

source and by the relay. If an ACK is received or the retransmission reaches the maximum number

of rounds, the source stops transmitting the current message and starts transmitting a new message.

If a NACK is received and the retransmission has not reached the maximum number of rounds,
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Figure 1: Illustration of the cooperative ARQ relay scheme with one source, one relay and one
destination.

the source sends another block of the same message. If the relay decodes successfully before the

destination is able to, the relay starts cooperating with the source by transmitting corresponding

blocks of the message to the destination by using a space-time transmission scheme [21] (e.g. the

Alamouti scheme [23]). The destination combines the received signal in current round and those

in previous rounds to jointly decode the data packet. After L ARQ retransmission rounds, if the

destination still cannot decode the data packet, an outage is declared which means that the mutual

information of the DF cooperative ARQ relay channel is below the transmission rate.

The DF cooperative ARQ relay scheme can be modeled as follows. The received signal yr,m at

the relay at the m-th (1 ≤ m ≤ L) ARQ retransmission round can be modeled as

yr,m =
√

Pshsr,mxs + ηr,m, (2.1)

where Ps is the transmitted power of the source signal xs, hsr,m is the coefficient of the source-relay

channel at the m-th ARQ retransmission round, and ηr,m is the additive noise. If the relay is not

involved in forwarding, the received signal yd,m at the destination at the m-th ARQ retransmission

round is

yd,m =
√

Pshsd,mxs + ηd,m, (2.2)

where hsd,m is the source-destination channel coefficient at the m-th ARQ retransmission round. If

the relay receives the data packet from the source successfully, it helps in forwarding the packet to

the destination using the Alamouti scheme. Specifically, each block xs of the data sequence can be

considered as having two parts, xs,1, and xs,2 (i.e. xs = [xs,1 xs,2]). The relay forwards the block

in the form of xr =
[−x∗s,2 x∗s,1

]
. The received signal yd,m at the destination at the m-th ARQ
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retransmission round can be written as

yd,m =
√

Pshsd,mxs +
√

Prhrd,mxr + ηd,m, (2.3)

where Pr is the transmitted power at the relay and hrd,m is the channel coefficient from the relay

to the destination at the m-th ARQ retransmission round. At the destination, the message block

xs can be recovered based on the orthogonal structure of the Alamouti code [21, 23]. The channel

coefficients hsd,m, hsr,m and hrd,m are modeled as independent, zero-mean complex Gaussian ran-

dom variables with variance σ2
sd, σ2

sr and σ2
rd, respectively. We consider a fast fading scenario, i.e.

the channels remain fixed within one ARQ retransmission round, but change independently from

one round to another (packet-rate fading). The channel state information is assumed to be known

at the receiver and unknown at the transmitter. The noise terms ηr,m and ηd,m are modeled as

zero-mean complex Gaussian random variables with variance N0.

3 Outage Probability Analysis

3.1 Two Lemmas

First we develop two lemmas that will paly a key role in analyzing the outage probability of the

DF cooperative ARQ relay scheme.

Lemma 3.1 If us1,...,sM and vs1,...,sM are two independent scalar random variables satisfying the

following properties

lim
si→∞
1≤i≤M

M∏

i=1

sd1
i · Pr [us1,...,sM < t] = a · f(t),

lim
si→∞
1≤i≤M

M∏

i=1

sd2
i · Pr [vs1,...,sM < t] = b · g(t),

where d1, d2, a and b are constants, f(t) and g(t) are monotonically increasing functions, and f ′(t)

is integrable, then

lim
si→∞
1≤i≤M

M∏

i=1

sd1+d2
i · Pr [us1,...,sM + vs1,...,sM < t] = ab ·

∫ t

0
g(x)f ′(t− x)dx. (3.1)
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Proof : For any partition U of the interval [0, t], i.e. U = {u0, u1, ..., uJ} with u0 = 0 and

uJ = t, we can obtain upper and lower bounds of the event {us1,...,sM + vs1,...,sM < t} as follows:

{us1,...,sM + vs1,...,sM < t} ⊆
J⋃

j=1

{uj−1 ≤ us1,...,sM < uj} ∩ {vs1,...,sM < t− uj−1}, (3.2)

{us1,...,sM + vs1,...,sM < t} ⊇
J⋃

j=1

{uj−1 ≤ us1,...,sM < uj} ∩ {vs1,...,sM < t− uj}. (3.3)

The upper and lower bounds in (3.2) and (3.3), respectively, are considered as a union of rectangles

between uj−1 and uj for 0 ≤ j ≤ J . First, let us focus on the upper bound. The probability of the

subset {uj−1 ≤ us1,...,sM < uj} ∩ {vs1,...,sM < t− uj−1} can be calculated as

Pr [uj−1 ≤ us1,...,sM < ui, vs1,...,sM < t− uj−1]

= {Pr [us1,...,sM < uj ]− Pr [us1,...,sM < uj−1]}Pr [vs1,...,sM < t− uj−1] . (3.4)

Then,

lim
si→∞
1≤i≤M

M∏

i=1

sd1+d2
i · Pr [uj−1 ≤ us1,...,sM < uj ,vs1,...,sM < t− uj−1] = ab · {f(uj)− f(uj−1)}g(t− uj−1),

(3.5)

and for any monotonically increasing functions f(t) and g(t),

sup
U

lim
si→∞
1≤i≤M

M∏

i=1

sd1+d2
i · Pr [us1,...,sM + vs1,...,sM < t] ≤ ab ·

J∑

j=1

g(t− uj−1){f(uj)− f(uj−1)}. (3.6)

Similarly,

infU lim
si→∞
1≤i≤M

M∏

i=1

sd1+d2
i · Pr [us1,...,sM + vs1,...,sM < t] ≥ ab ·

L∑

j=1

g(t− uj){f(uj)− f(uj−1)}. (3.7)

The above upper and lower bounds are good for any partition U = {u0, u1, ..., uJ} over the interval

[0, t]. Since f ′(t) is integrable, then, for J →∞, the sum terms in (3.6) and (3.7) converge to the

same integral
∫ t
0 g(x)f ′(t− x)dx. Therefore we have the result in (3.1). ¥

We note that the special case of Lemma 1 with M = 1 was presented in [24]. Lemma 3.1 will

be used to approximate the outage probability of the ARQ schemes at high SNR scenario. In the

following, we define a key function Fn(β1, ..., βn; t) which will be used to characterized the outage

probability of the DF cooperative ARQ relay scheme. For any integer n ≥ 2 and non-zero constants

β1, β2, · · · , βn, define

Fn(β1, ..., βn; t) ,
∫ t

0

∫ xn

0
· · ·

∫ x2

0
2β1x1+β2x2+···+βnxndx1dx2 · · ·dxn. (3.8)
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The following lemma evaluates Fn(β1, ..., βn; t) in closed-form1.

Lemma 3.2 For any integer n ≥ 2 and non-zero constants β1, β2, · · · , βn, the function Fn(β1, ..., βn; t)

can be calculated as follows

Fn(β1, ..., βn; t) =
∑

δ1,...,δn−1

∈{0,1}

(−1)n+δ1+···+δn−1(ln2)−n

∏n
m=1

[∑m
l=1 im,l(δ)βl

]
(
2[
Pn

l=1 in,l(δ)βl]t − 1
)

, (3.9)

where the variables δ1, δ2, ..., δn−1 ∈ {0, 1}, δ , {δ1, δ2, ..., δn−1}, and the coefficients {im,l(δ) : 1 ≤
m ≤ n, 1 ≤ l ≤ m} are specified as

i1,1(δ) = i2,2(δ) = · · · = in,n(δ) = 1,

and, for any m = 2, 3, ..., n,

im,l(δ) = δm−1 · im−1,l(δ), l = 1, 2, ...,m− 1.

P roof : We use induction to prove the result for any integer n ≥ 2. When n = 2, it is easy to

see that

F2(β1, β2; t) =
∫ t

0

∫ x2

0
2β1x1+β2x2dx1dx2

=
(ln2)−1

β1

{
(ln2)−1

β1 + β2

(
2(β1+β2)t − 1

)
− (ln2)−1

β2

(
2β2t − 1

)}

=
∑

δ1∈{0,1}

(−1)2+δ1(ln2)−2

∏2
m=1

[∑m
l=1 im,l(δ)βl

]
(
2[
P2

l=1 i2,l(δ)βl]t − 1
)

, (3.10)

i.e. the closed-form expression in (3.9) is valid for n = 2. Next, we assume that the result in (3.9)

is good for n = k, where k is any fixed integer greater or equal to 2. Then, for n = k + 1,

Fk+1(β1, ..., βk+1; t) =
∫ t

0

∫ xk+1

0
· · ·

∫ x2

0
2β1x1+β2x2+···+βk+1xk+1dx1dx2 · · ·dxk+1

=
∫ t

0

∫ xk+1

0
· · ·

∫ x2

0
2β1x1+β2x2+···+βkxk dx1dx2 · · ·dxk

︸ ︷︷ ︸
Fk(β1,...,βk; xk+1)

2βk+1xk+1 dxk+1

=
∫ t

0
Fk(β1, ..., βk; xk+1) 2βk+1xk+1 dxk+1. (3.11)

1Arguably, the significance of Lemma 3.2 goes beyond the problem considered in this paper.
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According to the induction assumption, we have

Fk(β1, ..., βk;xk+1) =
∫ xk+1

0

∫ xk

0
· · ·

∫ x2

0
2β1x1+β2x2+···+βkxkdx1dx2 · · ·dxk

=
∑

δ1,...,δk−1

∈{0,1}

(−1)k+δ1+···+δk−1(ln2)−k

∏k
m=1

[∑m
l=1 im,l(δ)βl

]
(
2[
Pk

l=1 ik,l(δ)βl]xk+1 − 1
)

. (3.12)

Substituting (3.12) into (3.11), we obtain

Fk+1(β1, ..., βk+1; t)

=
∑

δ1,...,δk−1

∈{0,1}

(−1)k+δ1+···+δk−1(ln2)−k

∏k
m=1

[∑m
l=1 im,l(δ)βl

]
∫ t

0

(
2[
Pk

l=1 ik,l(δ)βl+βk+1]xk+1 − 2βk+1xk+1

)
dxk+1

=
∑

δ1,...,δk−1

∈{0,1}

(−1)k+δ1+···+δk−1(ln2)−(k+1)

∏k
m=1

[∑m
l=1 im,l(δ)βl

] · [ ∑k
l=1 ik,l(δ)βl + βk+1

]
(
2[
Pk

l=1 ik,l(δ)βl+βk+1]t − 1
)

−
∑

δ1,...,δk−1

∈{0,1}

(−1)k+δ1+···+δk−1(ln2)−(k+1)

∏k
m=1

[∑m
l=1 im,l(δ)βl

] · βk+1

(
2βk+1t − 1

)

=
∑

δ1,...,δk
∈{0,1}

(−1)k+1+δ1+···+δk(ln2)−(k+1)

∏k+1
m=1

[∑m
l=1 im,l(δ)βl

]
(
2[
Pk+1

l=1 ik+1,l(δ)βl]t − 1
)
, (3.13)

where δk ∈ {0, 1}, ik+1,k+1(δ) = 1 and ik+1,l(δ) = δk · ik,l(δ), l = 1, 2, ..., k. Also, we have

k+1∑

l=1

ik+1,l(δ)βl =
{ ∑k

l=1 ik,l(δ)βl + βk+1, if δk = 1;
βk+1, if δk = 0.

(3.14)

Therefore, the closed-form expression in (3.9) is valid for n = k + 1, which completes the proof. ¥

3.2 Outage Probability of the Direct ARQ Transmission Scheme

For comparison purposes, in this subsection, we evaluate the outage probability of the direct ARQ

transmission scheme. The destination of a direct ARQ transmission scheme receives information

from the source directly, without involving the relay. The mutual information between the source

and the destination in the m-th round of the direct ARQ transmission scheme is

Isd,m = log2

(
1 +

Ps

N0
|hsd,m|2

)
. (3.15)

The total mutual information after L ARQ rounds is Itot
sd =

∑L
m=1 Isd,m. Thus, the outage proba-

bility of the direct ARQ scheme after L ARQ rounds is

P out,L = Pr
[
Itot
sd < R

]
. (3.16)
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A closed-form expression of (3.16) is not tractable. An approximation of the outage probability for

high-SNR can be obtained as a direct application of Lemma 3.1 with M = 1:

P out,L ∼ gL(R)
( N0

σ2
sdPs

)L

, (3.17)

where gL(·) is defined as

gn(t) =
∫ t

0
gn−1(x)f ′(t− x)dx, n ≥ 1, (3.18)

with g0(t) = 1 and f(t) = 2t− 1. Expressions (3.17) and (3.18) appeared also in [24]. However, the

calculation of the coefficient gL(R) that involves L recursive integrals was not treated in [24]. In

this paper, we develop a closed-form expression for the function gn(t) for any n ≥ 1. Specifically,

since gn(t) =
∫ t
0 gn−1(x)f ′(t− x)dx and f ′(t) = 2tln2, we have

gn(t) =
∫ t

0

∫ xn−1

0
· · ·

∫ x2

0
g1(x1)f ′(x2 − x1)f ′(x3 − x2) · · · f ′(xn−1 − xn−2)f ′(t− xn−1) dx1dx2 · · ·dxn−1

=
∫ t

0

∫ xn−1

0
· · ·

∫ x2

0
(2x1 − 1)(ln2)n−12x2−x12x3−x2 · · · 2xn−1−xn−22t−xn−1dx1dx2 · · · dxn−1

= 2t(ln2)n−1

∫ t

0

∫ xn−1

0
· · ·

∫ x2

0
(1− 2−x1)dx1dx2 · · · dxn−1

= 2t (ln2)n−1

(n− 2)!

∫ t

0
xn−2(1− 2−t+x) dx.

Since
∫ t
0 xn−2 dx = 1

n−1 tn−1 and ([25])

∫ t

0
xn−22x dx = −2t

n−1∑

m=1

(n− 2)!
(−ln2)m(n−m− 1)!

tn−m−1 +
(n− 2)!

(−ln2)n−1
,

therefore, a closed-form expression of gn(t) can be obtained as follows

gn(t) = 2t (t · ln2)n−1

(n− 1)!
+ 2t

n−1∑

m=1

(−1)m(t · ln2)n−m−1

(n−m− 1)!
+ (−1)n

= 2t
n∑

m=1

(−1)n−m

(m− 1)!
(t · ln2)m−1 + (−1)n, (3.19)

which can be calculated efficiently.

3.3 Outage Probability of the DF Cooperative ARQ Relay Scheme

In this subsection, we derive the outage probability of the DF cooperative ARQ relay scheme under

packet-rate fading conditions. In the DF cooperative ARQ relay scheme, if the relay decodes the

message from the source correctly, say, at the k-th round, then at the (k + 1)-th round, the relay
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starts forwarding appropriate ARQ blocks to the destination. Let {Tr = k} denote the event of

successful message decoding by the relay at the k-th round and subsequent ARQ block forwarding

at the (k + 1)-th round. Let P out
Tr=k denote the conditional probability that the destination decodes

the message unsuccessfully after L ARQ retransmission rounds given that the event {Tr = k}
occurred. In other words, P out

Tr=k denote the outage probability at the destination despite the fact

that the relay started forwarding at the (k + 1)-th round. Therefore, the outage probability of the

DF cooperative ARQ relay scheme after L ARQ retransmission rounds can be written as

P out,L =
L∑

k=1

P out
Tr=k · Pr [Tr = k] . (3.20)

First, we calculate the probability of the event {Tr = k} , i.e. Pr [Tr = k]. The mutual infor-

mation between the source and the relay in the m-th ARQ round is

Isr,m = log2

(
1 +

Ps

N0
|hsr,m|2

)
. (3.21)

We note that the channels change independently over each ARQ retransmission round in a fast

fading scenario, so the mutual information of fading channels can be viewed as a sum of independent

random variables. The probability that the relay decodes the message successfully at the first round

(Tr = 1) is

Pr [Tr = 1] = Pr [Isr,1 ≥ R] = exp
(
−2R − 1

σ2
sr

· N0

Ps

)
. (3.22)

For any Tr = k, k = 2, 3, ..., L− 1, we have

Pr [Tr = k] = Pr

[
k−1∑

m=1

Isr,m < R,
k∑

m=1

Isr,m ≥ R

]

= Pr

[
k−1∑

m=1

Isr,m < R

]
− Pr

[
k∑

m=1

Isr,m < R

]

∼ gk−1(R)
( N0

σ2
srPs

)k−1

− gk(R)
( N0

σ2
srPs

)k

, (3.23)

where gk−1(·) and gk(·) are specified in (3.19) in the previous subsection. The approximation in

(3.23) is obtained by applying Lemma 1 with M = 1. Finally, if Tr = L, we have

Pr [Tr = L]=Pr

[
L−1∑

m=1

Isr,m < R

]
∼gL−1(R)

( N0

σ2
srPs

)L−1

. (3.24)
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To summarize, the probability Pr [Tr = k] can be given by the following branch function

Pr [Tr = k] ∼





exp
(
−2R−1

σ2
sr

· N0
Ps

)
, k = 1;

gk−1(R)
(

N0
σ2

srPs

)k−1
− gk(R)

(
N0

σ2
srPs

)k
, 2 ≤ k ≤ L− 1;

gL−1(R)
(

N0
σ2

srPs

)L−1
, K = L.

(3.25)

Next, we calculate the conditional outage probability P out
Tr=k when the relay decodes correctly

at the k-th round and starts forwarding at the (k + 1)-th round. This is done by the following

theorem.

Theorem 3.1 The conditional outage probability P out
Tr=k, 1 ≤ k ≤ L, is given by

P out
Tr=k ∼





bk(R)
2L−k

(
N0

σ2
sdPs

)L (
N0

σ2
rdPr

)L−k
, 1 ≤ k ≤ L− 1;

gL(R)
(

N0

σ2
sdPs

)L
, k = L,

(3.26)

where gk(·) are specified in (3.19), and

bk(t)
4
=

∫ t

0
gk(x)q′L−k(t− x)dx, (3.27)

in which q1(t) = (2t − 1)2 and for any 2 ≤ n ≤ L− 1, qn(t) is given by

qn(t) = (−2ln2)n−1
∑

α1,··· ,αn−1

∈{0,1}

(−1)α1+···+αn−12(1+αn−1)t
{
Fn−1(1−α1, α1−α2, · · · , αn−2−αn−1; t)

− 2Fn−1(−α1, α1−α2, · · · , αn−2−αn−1; t)

+Fn−1(−1−α1, α1−α2, · · · , αn−2−αn−1; t)
}
. (3.28)

The function Fn−1( · ; t) is specified in Lemma 3.2.

Proof : When the relay cooperates with the source by jointly sending a message block via the

Alamouti scheme, the mutual information of the cooperative channels in the m-th ARQ round is

given by [21]

Isrd,m = log2

(
1 +

Ps

N0
|hsd,m|2 +

Pr

N0
|hrd,m|2

)
. (3.29)

Thus, with L ARQ rounds, the total mutual information is

Itot
d,Tr=k =





∑k
m=1 Isd,m +

∑L
m=k+1 Isrd,m, 1 ≤ k < L;

∑L
m=1 Isd,m, k = L.

(3.30)
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The above mutual information is based on the assumption that the channels change independently

over each ARQ retransmission round, so the mutual information of fading channels can be viewed

as a sum of independent random variables. We also note that when Tr = L, the relay has no chance

to cooperate since the source starts sending a new packet.

The conditional outage probability P out
Tr=k can be evaluated as

P out
Tr=k = Pr

[
Itot
d,Tr=k < R

]
. (3.31)

When Tr = L, the conditional outage probability is reduced to the direct ARQ scenario and it is

given by

P out
Tr=L = Pr

[
Itot
d,Tr=L < R

] ∼ gL(R)
( N0

σ2
sdPs

)L

. (3.32)

In the following, we calculate the conditional outage probability (3.31) for any Tr = k, k =

1, 2, ..., L− 1. For simplicity in presentation, we introduce the following notation. Let

um =





log2

(
1 + s1|hsd,m|2

)
, 1 ≤ m ≤ k;

log2

(
1 + s1|hsd,m|2 + s2|hrd,m|2

)
, k + 1 ≤ m ≤ L,

(3.33)

where s1 = Ps/N0 and s2 = Pr/N0. Then, the total mutual information can be written as

Itot
d,Tr=k =

L∑

m=1

um. (3.34)

We note that for any 1 ≤ m ≤ k, |hsd,m|2 is an exponential random variable with parameter σ−2
sd .

Thus,

lim
s1→∞

s1 · Pr [um < t] = lim
s1→∞

s1 · Pr
[
|hsd,m|2 <

2t − 1
s1

]
=

1
σ2

sd

(2t − 1), m = 1, 2 · · · , k. (3.35)

Since um, 1 ≤ m ≤ k, are independent random variables, by applying Lemma 1 with M = 1

recursively, we have

lim
s1→∞

sk
1 · Pr

[
k∑

m=1

um < t

]
=

( 1
σ2

sd

)k
gk(t), (3.36)

where gk(t) is given in (3.19). For any m, k + 1 ≤ m ≤ L, um involves the sum of two independent

exponential random variables |hsd,m|2 and |hrd,m|2 with parameters σ−2
sd and σ−2

rd , respectively, and

the distribution of um can be specified as

Pr [um < t] = Pr
[
s1|hsd,m|2 + s2|hrd,m|2 < 2t − 1

]

=





1−
(
1 + 1

σ2
sd

2t−1
s1

)
exp

(
− 1

σ2
sd

2t−1
s1

)
, if s1

σ2
rd

= s2

σ2
sd

;

1− s1σ2
sd

s1σ2
sd−s2σ2

rd
exp

(
− 1

σ2
sd

2t−1
s1

)
− s2σ2

rd

s2σ2
rd−s1σ2

sd
exp

(
− 1

σ2
rd

2t−1
s2

)
, if s1

σ2
rd
6= s2

σ2
sd

,

(3.37)
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for any m = k + 1, ..., L. Thus, for any m = k + 1, ..., L, we have

lim
si→∞
1≤i≤2

s1s2 · Pr [um < t] =
1

2σ2
sdσ

2
rd

(2t − 1)2. (3.38)

Let q0(t) = 1 and p(t) = (2t − 1)2, then p′(t) = 2(22t − 2t)ln2. Since um, k + 1 ≤ m ≤ L, are

independent to each other, by applying Lemma 3.1 with M = 2 recursively, we can show that for

any n = 1, 2, ..., L− k,

lim
si→∞
1≤i≤2

(s1s2)
n · Pr

[
k+n∑

m=k+1

um < t

]
=

(
1

2σ2
sdσ

2
rd

)n

qn(t), (3.39)

in which

qn(t) =
∫ t

0
qn−1(x)p′(t− x)dx, n = 1, 2, ..., L− k. (3.40)

We can see that when n = 1, q1(t) = (2t−1)2. But for larger n, the calculation of qn(t) is involved.

Based on Lemma 3.2, a closed-form expression for qn(t) can be obtained as follows:

qn(t) =
∫ t

0

∫ xn−1

0
· · ·

∫ x2

0
q1(x1)p′(x2 − x1)p′(x3 − x2) · · · p′(xn−1 − xn−2)

×p′(t− xn−1)dx1dx2 · · ·dxn−1

=
∫ t

0

∫ xn−1

0
· · ·

∫ x2

0
(2x1 − 1)2(2ln2)n−1

n−2∏

m=1

(
2xm+1−xm − 1

)

×(2t−xn−1 − 1)2t−x1dx1dx2 · · ·dxn−1

= (−2ln2)n−1
∑

α1,...,αn−1

∈{0,1}

(−1)α1+···+αn−12(1+αn−1)t

×
∫ t

0

∫ xn−1

0
· · ·

∫ x2

0
(2x1 − 1)2 · 2−α1x1

n−1∏

m=2

2(αm−1−αm)xmdx1dx2 · · ·dxn−1

= (−2ln2)n−1
∑

α1,...,αn−1

∈{0,1}

(−1)α1+···+αn−12(1+αn−1)t
{
Fn−1(1− α1, β2, ..., βn−1; t)

−2Fn−1(−α1, β2, ..., βn−1; t) + Fn−1(−1− α1, β2, ..., βn−1; t)
}
, (3.41)

where β2 = α1 − α2, β3 = α2 − α3, ..., βn−1 = αn−2 − αn−1, and Fn−1( · ; t) is defined in (3.9) (a

closed-form expression for Fn−1( · ; t) is given in Lemma 3.2). We note that in the case where βi is

zero for some i, the non-zero condition in Lemma 3.2 is not satisfied. In such case, we may evaluate

Fn−1( · ; t) by applying Lemma 3.2 with βi = εi where εi is sufficiently small (i.e. εi → 0) (Since

the function Fn(β1, ..., βn; t) defined in (3.9) is continuous in terms of βi, 2 ≤ i ≤ n − 1, so is the

closed-form expression in Lemma 3.2).
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According to the result in (3.39) with n = L− k, we have

lim
si→∞
1≤i≤2

(s1s2)
L−k · Pr

[
L∑

m=k+1

um < t

]
=

(
1

2σ2
sdσ

2
rd

)L−k

qL−k(t), (3.42)

where qL−k(t) can be calculated specifically based on (3.41). Combining (3.36) and (3.42), and

applying Lemma 1, we obtain

lim
si→∞
1≤i≤2

sL
1 sL−k

2 · Pr
[ k∑

m=1

Isd,m +
L∑

m=k+1

Isrd,m < R

]
= bk(R)

(
1

σ2
sd

)L (
1

2σ2
rd

)L−k

, (3.43)

where

bk(t) =
∫ t

0
gk(x)q′L−k(t− x)dx. (3.44)

Since s1 = Ps/N0 and s2 = Pr/N0, so for any Tr = k, k = 1, 2, ..., L−1, the conditional probability

(3.31) can be asymptotically approximated as

P out
Tr=k = Pr

[ k∑

m=1

Isd,m +
L∑

m=k+1

Isrd,m < R

]
∼ bk(R)

2L−k

( N0

σ2
sdPs

)L ( N0

σ2
rdPr

)L−k

, (3.45)

which completes the proof of the theorem. ¥

Finally, based on the probability Pr [Tr = k] in (3.25) and the conditional outage probability

P out
Tr=k in Theorem 3.1, we can obtain the outage probability for the DF cooperative ARQ relay

scheme as follows

P out,L ∼
L−1∑

k=1

bk(R)
2L−k

[
gk−1(R)− gk(R)

N0

σ2
srPs

] ( N0

σ2
sdPs

)L( N0

σ2
rdPr

)L−k( N0

σ2
srPs

)k−1

+ gL(R)gL−1(R)
( N0

σ2
sdPs

)L( N0

σ2
srPs

)L−1

. (3.46)

Furthermore, we note that the term gk(R) N0
σ2

srPs
would be much smaller than gk−1(R) at high SNR

Ps
N0

, so the asymptotic outage probability in (3.46) can be further simplified as

P out,L ∼
L∑

k=1

bk(R)gk−1(R)
2L−k

( N0

σ2
sdPs

)L( N0

σ2
rdPr

)L−k( N0

σ2
srPs

)k−1

, (3.47)

where bL(R) = gL(R). Simulation studies presented later in this paper will illustrate the tightness

of the outage probability at high SNR.

Based on the above asymptotic outage probability, we observe that the term
(

N0

σ2
sdPs

)L
in (3.47)

contributes a diversity order L in the asymptotic outage performance, which is due to the fast
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fading nature of the channels. The term
(

N0

σ2
rdPr

)L−k( N0
σ2

srPs

)k−1
contributes an overall diversity

order (L − k) + (k − 1) = L − 1 which is due to the cooperative relaying. Thus, the asymptotic

outage probability of the DF cooperative ARQ relay scheme has an overall diversity order 2L− 1.

In the case of the equal power allocation, i.e. Ps = Pr = P , the contribution of the diversity order

in the outage probability is more evident. We recall that the diversity order of the direct ARQ

transmission scheme is only L, which is due to the fast fading nature of the channels, and it is

much smaller than that of the DF cooperative ARQ relay scheme.

4 Optimum Power Allocation for the DF Cooperative ARQ Relay
Scheme

In this section, we derive the asymptotically optimum power allocation strategy for the DF cooper-

ative ARQ relay scheme based on the approximation of the outage probability that was presented

in the previous section. Without loss of generality, we denote the total transmission power as

Ps +Pr
4
= 2P , where Ps and Pr are the power used by the source and the relay, respectively. Then,

for any given total transmission power 2P , we try to determine optimum power Ps and Pr in order

to minimize the asymptotic outage probability.

Let λ denote the ratio of the source power Ps to the total transmission power, i.e. λ = Ps
2P .

Then 0 ≤ λ ≤ 1 and Pr = (1 − λ)2P . The asymptotic outage probability of the DF cooperative

ARQ relay scheme can be written as

P out,L ∼ σ2
sr

(2σ2
sdσ

2
rd)

L

(N0

2P

)2L−1 L∑

k=1

bk(R)gk−1(R)
(

2σ2
rd

σ2
sr

)k 1
λL+k−1(1− λ)L−k

. (4.1)

We try to find the optimum power ratio λ (0 ≤ λ ≤ 1) such that the asymptotic outage probability

is minimized. Let Ak(R)
4
= bk(R)gk−1(R)

(
2σ2

rd
σ2

sr

)k
and

G(λ)
4
=

L∑

k=1

Ak(R)
λL+k−1(1− λ)L−k

. (4.2)

Then the optimization problem can be formulated as follows

min
λ

G(λ)

s.t. 0 < λ < 1. (4.3)
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The optimum value of λ (i.e. λopt) satisfies the following equation

∂G(λ)
∂λ

=
L∑

k=1

Ak(R)
{ −(L + k − 1)

λL+k(1− λ)L−k
+

L− k

λL+k−1(1− λ)L−k+1

}
= 0, (4.4)

or equivalently

L∑

k=1

Ak(R)

{
−(L + k − 1)

(
1− λ

λ

)k

+ (L− k)
(

1− λ

λ

)k−1
}

= 0. (4.5)

Equation (4.5) can be easily solved by the Newton method. Looking closely at equation (4.5), we

observe the followings. Since Ak(R) is positive, then 1−λ
λ must be less than 1, otherwise the left-

hand side of (4.5) is negative. It is thus implied that λ > 1
2 , i.e. Ps > P and Pr < P which means

that we should allocate more power at the source and less power at the relay. It also shows that the

equal power allocation scheme that assigns equal power to the source and the relay is not optimum

in general. On the other hand, for any given transmission rate R, the parameters Ak(R) in (4.5)

depend only on σ2
sr and σ2

rd which are the variance values of the source-relay and relay-destination

channel links, respectively. Thus, the asymptotic optimum power ratio λopt depends only on the

the variance of the source-relay and relay-destination channels, and not on the source-destination

channel link. A similar observation was reported in [11] where the optimum power allocation

between the source and the relay was determined based on the analysis of the symbol-error-rate

performance.

As an example, we study the case where L = 2. In this case, equation (4.5) is reduced to

3A2(R)
(

1− λ

λ

)2

+ 2A1(R)
(

1− λ

λ

)
−A1(R) = 0, (4.6)

so the optimum power ratio is

λ =
1 +

√
1 + 3A2(R)

A1(R)

2 +
√

1 + 3A2(R)
A1(R)

. (4.7)

Thus the corresponding optimum power allocation at the source and at the relay is given by

Ps =
1 +

√
1 + 3A2(R)

A1(R)

1 + 1
2

√
1 + 3A2(R)

A1(R)

P, (4.8)

Pr =
1

1 + 1
2

√
1 + 3A2(R)

A1(R)

P. (4.9)

In (4.8) and (4.9), A2(R)
A1(R) = 2 b2(R)g1(R)

b1(R)

σ2
rd

σ2
sr

. Thus, the optimum power allocation dependents only

on the ratio of the variance of the source-relay channel and the variance of the relay-destination
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channel, which is consistent with our observation that we based on equation (4.5). Also, from (4.8)

and (4.9), we can see that P < Ps < 2P and 0 < Pr < P , i.e. we should allocate more power

at the source and less power at the relay to optimize the overall performance at the destination.

Furthermore, (4.8) and (4.9) imply that if the relay is located close to the source, i.e. σ2
sr À σ2

rd,

Ps goes to 4
3P and Pr goes to 2

3P . On the contrary, if the relay is located close to the destination,

i.e. σ2
sr ¿ σ2

rd, Ps goes to 2P and Pr goes to 0, which means that, in this case we should allocate

most of the power (2P ) at the source. The latter is is reasonable since the cooperative role of the

relay is minor in this case.

5 Simulation Results

In this section, we present numerical and simulation studies that compare the performance of the

DF cooperative ARQ scheme with that of the direct ARQ scheme. In all studies, the variance of

the channel hij {(i, j) ∈ (s, d), (s, r), (r, d)} is assumed to be σ2
ij = d−µ

ij , where dij is the distance

between two nodes and µ is the path loss exponent which is assumed to be µ = 3 in a typical

fading environment. We assume that the source-destination distance is dsd = 10 m and the relay is

located in the midpoint between the source and the destination. We consider a target transmission

rate of R = 2 bits/s/Hz.

Figs. 2, 3 and 4 illustrate the performance curves when the maximum number of ARQ retrans-

mission rounds is L = 2, 3 and 4, respectively. In these figures, equal power allocation is assumed,

i.e. Ps = Pr = P . All figures show that the proposed theoretical approximation of the outage

probability of the DF cooperative ARQ relay scheme is tight for high SNR values while it is less

tight for low SNR values. For example, in Fig. 2 (L = 2), the analytical approximation curve is

almost indistinguishable from the simulated curve for all outage performance levels below 10−3.

Moreover, the larger the number of ARQ retransmission rounds, the higher the diversity order of

the DF cooperative ARQ relay scheme. This observation is consistent with the theoretical result

that the diversity order of the DF cooperative ARQ relay scheme increases as the number of ARQ

retransmission rounds increases.

All Figs. 2–4 show that the DF cooperative ARQ relay scheme significantly outperforms the

direct ARQ scheme. At an outage performance of 10−4, the performance of the DF cooperative
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ARQ relay scheme is about 8dB better than that of the direct ARQ scheme. For the same maxi-

mum number of retransmission rounds L, the DF cooperative ARQ relay scheme exhibits a higher

diversity order than the direct ARQ scheme which is consistent with our theoretical developments,

i.e. the DF cooperative ARQ relay scheme has diversity order 2L−1, while the direct ARQ scheme

has diversity order only L.

In Fig. 5, we plot the power allocation optimization function G(λ) in terms of λ (0 ≤ λ ≤ 1) for

the cases where L = 2, 3 and 4, respectively. We assume that the quality of the source-relay link is

the same as that of the relay-destination link, i.e. σ2
sr = σ2

rd. We observe that the optimum power

ratio λ is about 0.8 for the three cases. More precisely, from the numerical results, the optimum

power ratios are λ = 0.8203, λ = 0.7969 and λ = 0.7838 for L = 2, 3 and 4, respectively. It appears

that the optimum power ratio decreases gradually when the maximum number of retransmission

rounds is increased. Furthermore, the optimum power ratio is much larger than 1/2 which is

consistent with our analysis that we should allocate more power at the source and less at the relay.

In Figs. 6–8, we compare the performance of the DF cooperative ARQ relay scheme with op-

timum power allocation and with equal power allocation for L = 2, 3 and 4, respectively. Both

simulation and numerical approximation curves are included. In Fig. 6 (L = 2), the optimum

power allocated at the source and the relay is set to the numerical values obtained from Fig. 5, i.e.

Ps/2P = 0.8203 and Pr/2P = 0.1797, respectively. We observe that the performance of the DF

cooperative ARQ relay scheme with the optimum power allocation is about 1.5dB better than that

of the scheme with the equal power allocation. In Fig. 7 (L = 3), the optimum power allocation is

Ps/2P = 0.7969 and Pr/2P = 0.2031, and the corresponding curve shows a performance improve-

ment of 1.25dB compared to the equal power allocation case. In Fig. 8 (L = 4), the optimum

power allocation is Ps/2P = 0.7838 and Pr/2P = 0.2162. We see that the performance curve of

the DF cooperative ARQ relay scheme with optimum power allocation also exhibits performance

gains of about 1.25dB compared to the performance of the equal power allocation scheme.

6 Conclusion

In this paper, we developed, for the first time, a closed-form asymptotically tight (as SNR → ∞)

approximation of the outage probability for the DF cooperative ARQ relay scheme under fast
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fading conditions. The closed-from expression provides significant insight into the merits of DF

cooperative ARQ relaying relative to the direct ARQ scheme in fast fading scenarios and shows

that the cooperative scheme achieves diversity order equal to 2L − 1 while the diversity order of

the direct scheme is only L. Simulation and numerical studies illustrated that the closed-form

approximation of the outage probability is tight at high SNR. Based on the asymptotically tight

approximation of the outage probability, we were able to determine the optimum power allocation

strategy for the DF cooperative ARQ relay scheme. It turns out that equal power allocation is not

optimum in general and that the optimum power allocation strategy depends on the link quality of

the channels related to the relay. It is also clear that we should allocate more power at the source

and less at the relay. Further numerical and simulation studies illustrated the performance gains of

the DF cooperative ARQ relay scheme with optimum power allocation relative to the equal power

allocation scheme.
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Figure 2: Outage probability of the direct and DF cooperative ARQ schemes (L=2).
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Figure 3: Outage probability of the direct and DF cooperative ARQ schemes (L=3).
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Figure 4: Outage probability of the direct and DF cooperative ARQ schemes (L=4).
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Figure 5: Optimum power ratio λ for the DF cooperative ARQ scheme. When L=2, 3 and
4, the asymptotic power allocation is λ = 0.8203, λ = 0.7969 and λ = 0.7838, respectively.
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Figure 6: Outage probability of the DF cooperative ARQ scheme with equal and optimum
power allocations (L=2).
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Figure 7: Outage probability of the DF cooperative ARQ scheme with equal and optimum
power allocations (L=3).
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Figure 8: Outage probability of the DF cooperative ARQ scheme with equal and optimum
power allocations (L=4).
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